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Abstract
 
A number of architectural patterns are identified and applied to a case study involving ingest, storage, and 
analysis of a number of disparate data feeds. Each of these patterns is explored to determine the target 
problem space for the pattern and pros and cons of the pattern. The purpose is to facilitate and optimize 
future Big Data architecture decision making.

The patterns explored are:

•  Lambda  
•  Data Lake  
•  Metadata Transform  
•  Data Lineage  
•  Feedback  
•  CrossReferencing
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Introduction 
 
Modern business problems require ever-increasing amounts of data, and ever increasing variety in the data  
that they ingest. Aphorisms such as the “three V’s” have evolved to describe some of the high-level challenges  
that “Big Data” solutions are intended to solve. An introductory article on the subject may conclude with a 
recommendation to consider a highlevel technology stack such as Hadoop and its associated ecosystem.

While this sort of recommendation may be a good starting point, the business will inevitably find that there are 
complex data architecture challenges both with designing the new “Big Data” stack as well as with integrating  
it with existing transactional and warehousing technologies.

This paper will examine a number of architectural patterns that can help solve common challenges within this 
space. These patterns do not rely on specific technology choices, though examples are given where they may 
help clarify the pattern, and are intended to act as templates that can be applied to actual scenarios that  
a data architect may encounter.

The following ​ case study​ will be used throughout this paper as context and motivation for application  
of these patterns:

Alpha Trading, Inc. (ATI)​ is planning to launch a new quantitative fund. Their fund will be based on a proprietary 
trading strategy that combines real-time market feed data with sentiment data gleaned from social media and 
blogs. They expect that the specific blogs and social media channels that will be most influential, and therefore 
most relevant, may change over time. ATI’s other funds are run by pen, paper, and phone, and so for this new 
fund they start building their data processing infrastructure Greenfield.
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Pattern 1: Lambda
 
 
  

The first challenge that ATI faces is the timely processing of their real-time (per tick) market feed data. 
While the most recent ticks are the most important, their strategy relies on a continual analysis of not just 
the most recent ticks, but of all historical ticks in their system. They accumulate approximately 5GB of tick 
data per day. Performing a batch analysis (e.g. with Hadoop) will take them an hour. This 2 batch process 
gives them very good accuracy – great for predicting the past, but problematic for executing near real-time 
trades. Conversely, a streaming solution (e.g. Storm, Druid, Spark) can only accommodate the most recent 
data, and often uses approximating algorithms to keep up with the data flow. This loss of accuracy may 
generate false trading signals within ATI’s algorithm.

In order to combat this, the ​ Lambda Pattern​ will be applied. Characteristics of this pattern are:

•  The data stream is fed by the ingest system to both the batch and streaming analytics systems.
•  The batch analytics system runs continually to update intermediate views that summarize all data up to 
    the last cycle time — one hour in this example. These views are considered to be very accurate, but stale.
•  The streaming analytics system combines the most recent intermediate view with the data stream from 
    the last batch cycle time (one hour) to produce the final view.
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Pattern 1: Lambda (cont.)
While a small amount of accuracy is lost over the most recent data, this pattern provides a good compromise 
when recent data is important, but calculations must also take into account a larger historical data set. 
Thought must be given to the intermediate views in order to fit them naturally into the aggregated analysis 
with the streaming data.

With this pattern applied, ATI can utilize the full backlog of historical tick data; their updated architecture  
is as such:

The Lambda Pattern described here is a subset and simplification of the Lambda Architecture described in Marz/Warren.  
For more detailed considerations and examples of applying specific 3 technologies, this book is recommended.

Pattern 2: Data Lake 
ATI suspects that sentiment data analyzed from a number of blog and social media feeds will be important 
to their trading strategy. However, they aren’t sure which specific blogs and feeds will be immediately 
useful, and they may change the active set of feeds over time. In order to determine the active set, they  
will want to analyze the feeds’ historical content. Not knowing which feeds might turn out to be useful,  
they have elected to ingest as many as they can find.
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Pattern 2: Data Lake (cont.)
They quickly realize that this mass ingest causes them difficulties in two areas:

•  Their production trading server is built with very robust (and therefore relatively expensive) hardware, 
    and disk space is at a premium. It can handle those feeds that are being actively used, but all the 
    speculative feeds consume copious amounts of storage space. 

•  Each feed has its own semantics; most are semi structured or unstructured, and all are different. Each 
   requires a normalization process (e.g. an ETL workflow) before it can be brought into the structured 
   storage on the trading server. These normalization processes are laborintensive to build, and become  
   a bottleneck to adding new feeds. 

These challenges can be addressed using a ​ Data Lake Pattern​. In this pattern, all potentially useful 
data sources are brought into a landing area that is designed to be cost-effective for general storage. 
Technologies such as HDFS serve this purpose well. The landing area serves as a platform for initial 
exploration of the data, but notably does not incur the overhead of conditioning the data to fit the primary 
data warehouse or other analytics platform. This conditioning is conducted only after a data source has 
been identified of immediate use for the mainline analytics. Data Lakes provide a means for capturing 
and exploring potentially useful data without incurring the storage costs of transactional systems or the 
conditioning effort necessary to bring speculative sources into those transactional systems. Often all data 
may be brought into the Data Lake as an initial landing platform. However, this extra latency may result in 
potentially useful data becoming stale if it is time sensitive, as with ATI’s per tick market data feed. In  
this situation, it makes sense to create a second pathway for this data directly into the streaming or 
transactional system. It is often a good practice to also retain that data in the Data Lake as a complete 
archive and in case that data stream is removed from the transactional analysis in the future.

Incorporating the Data Lake pattern into the ATI architecture results in the following:

Pattern 3: Metadata Transform 
By this time, ATI has a number of data feeds incorporated into their analysis, but these feeds carry different  
formats, structures, and semantics. Even discounting the modeling and analysis of unstructured blog data, 
there are differences between well structured tick data feeds. For example, consider the following two feeds ​ 
showing stock prices from NASDAQ and the Tokyo Stock Exchange:
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The diagram above reveals a number of formatting and semantic conflicts that may affect data analysis.  
Further, consider that the ordering of these fields in each file is different:

NASDAQ: 01/11/2010,10:00:00.930,210.81,100,Q,@F,00,155401,,N,,,
TSE: 10/01/2008,09:00:13.772,,0,172.0,7000,,11,,

Typically, these normalization problems are solved with a fair amount of manual analysis of source and target 
formats implemented via scripting languages or ETL platforms. This becomes one of the most labor-intensive 
(and therefore expensive and slow) steps within the data analysis lifecycle. Specific concerns include:

•  Combination of knowledge needed: in order to perform this normalization, a developer must have or 
    acquire, in addition to development skills: knowledge of the domain (e.g. trading data), specific knowledge 
    of the source data format, and specific knowledge of the target data format. 

•  Fragility: any change (or intermittent errors or dirtiness!) in either the source or target data can break the 
    normalization, requiring a complete rework. 

•  Redundancy: many sub patterns are implemented repeatedly for each instance – this is low value  
   (re-implementing very similar logic) and duplicates the labor for each instance. 

Intuitively the planning and analysis for this sort of work is done at the metadata level (i.e. working with a 
schema and data definition) while frequently validating definitions against actual sample data. Identified 
conflicts in representation are then manually coded into the transformation (the “T” in an ETL process, or the 
bulk of most scripts).

Instead, the Metadata Transform Pattern proposes defining simple transformative building blocks. These 
blocks are defined in terms of metadata – for example: “perform a currency conversion between USD and 
JPY.” Each block definition has attached runtime code – a subroutine in the ETL/script – but at data integration 
time, they are defined and manipulated solely within the metadata domain.
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Pattern 3: Metadata Transform (cont.)
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Pattern 3: Metadata Transform (cont.)

This approach allows a number of benefits at the cost of additional infrastructure complexity:

• Separation of expertise: Developers can code the blocks without specific knowledge of source or target 
  data systems, while data owners/stewards on both the source and target side can define their particular 
  formats without considering transformation logic. 

• Code generation: Defining transformations in terms of abstract building blocks provides opportunities 
  for code generation infrastructure that can automate the creation of complex transformation logic by 
  assembling these predefined blocks. 

• Robustness: These characteristics serve to increase the robustness of any transform. As long as the 
  metadata definitions are kept current, transformations will also be maintained. The response time to 
  changes in metadata definitions is greatly reduced. 

• Documentation: This metadata mapping serves as intuitive documentation of the logical functionality  
  of the underlying code. 

Applying the Metadata Transform to the ATI architecture streamlines the normalization concerns between 
the markets data feeds illustrated above and additionally plays a significant role within the Data Lake. Given 
the extreme variety that is expected among Data Lake sources, normalization issues will arise whenever 
a new source is brought into the mainline analysis. Further, some preliminary normalization may be 
necessary simply to explore the Data Lake to identify currently useful data. Incorporating the Metadata 
Transform pattern into the ATI architecture results in the following:
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Pattern 4: Data Lineage 
Not all of ATI’s trades succeed as expected. These are carefully analyzed to determine whether the cause is 
simple bad luck, or an error in the strategy, the implementation of the strategy, or the data infrastructure. 
During this analysis process, not only will the strategy’s logic be examined, but also its assumptions: the data 
fed into that strategy logic. This data may be direct (via the normalization/ETL process) from the source, or 
may be take from intermediate computations. In both cases, it is essential to understand exactly where each 
input to the strategy logic came from – what data source supplied the raw inputs.

The Data Lineage pattern is an application of metadata to all data items to track any “upstream” source data 
that contributed to that data’s current value. Every data field and every transformative system (including both 
normalization/ETL processes as well as any analysis systems that have produced an output) has a globally 
unique identifier associated with it as metadata. In addition, the data field will carry a list of its contributing 
data and systems. For example, consider the following diagram:

Note that the choice is left open whether each data item’s metadata contains a complete system history back 
to original source data, or whether it contains only its direct ancestors. In the latter case, storage and network 
overhead is reduced at the cost of additional complexity when a complete lineage needs to be computed.

This pattern may be implemented in a separate metadata documentation store to the effect of less impact 
on the mainline data processing systems; however this runs the risk of a divergence between documented 
metadata and actual data if extremely strict development processes are not adhered to. Alternately, a data 
structure that includes this metadata may be utilized at “runtime” in order to guarantee accurate lineage.  
For example, the following JSON structure contains this metadata while still retaining all original6feed data:

{ 
  “data” : { 
“field1” : “value1”, 
“field2” : “value2” 
}, 
“metadata” : { 
  “document_id” : “DEF456”, 
  “parent_document_id” : [“ABC123”, “EFG789”]  
  } 
} 
In this JSON structure the decision has been made to track lineage at the document level, but the same 
principal may be applied on an individual field level. In the latter case, it is generally worth tracking both the 
document lineage and the specific field(s) that sourced the field in question.

In the case of ATI, all systems that consume and produce data will be required to provide this metadata,  
and with no additional components or pathways, the logical architecture diagram will not need to be altered.
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Pattern 5: Feedback

Frequently, data is not analyzed in one monolithic step. Intermediate views and results are necessary, in 
fact the Lambda Pattern depends on this, and the Lineage Pattern is designed to add accountability and 
transparency to these intermediate data sets. While these could be discarded or treated as special cases, 
additional value can be obtained by feeding these data sets back into the ingest system (e.g. for storage in 
the Data Lake). This gives the overall architecture a symmetry that ensures equal treatment of internally 
generated data. Furthermore, these intermediate data sets become available to those doing discovery and 
exploration within the Data Lake and may become valuable components to new analyses beyond their 
original intent. As higher order intermediate data sets are introduced into the Data Lake, its role as data 
marketplace is enhanced increasing the value of that resource as well.

In addition to incremental storage and bandwidth costs, the Feedback Pattern increases the risk of 
increased ​ data consanguinity, ​ in which multiple, apparently different data fields are all derivatives of  
the same original data item. Judicious application of the Lineage pattern may help to alleviate this 7 risk.

ATI will capture some of their intermediate results in the Data Lake, creating a new pathway in their data architecture.
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Pattern 6: Crossreferencing 
By this point, the ATI data architecture is fairly robust in terms of its internal data transformations and 
analyses. However, it is still dependent on the validity of the source data. While it is expected that validation 
rules will be implemented either as a part of ETL processes or as an additional step (e.g. via a commercial 
data quality solution), ATI has data from a large number of sources and has an opportunity to leverage any 
conceptual overlaps in these data sources to validate the incoming data.

The same conceptual data may be available from multiple sources. For example, the opening price of SPY 
shares on 6/26/15 is likely to be available from numerous market data feeds, and should hold an identical 
value across all feeds (after normalization). If these values are ever detected to diverge, then that fact 
becomes a flag to indicate that there is a problem either with one of the data sources or with ingest and 
conditioning logic.

In order to take advantage of cross-referencing validation, those semantic concepts must be identified which 
will serve as common reference points. This may imply a metadata modeling approach such as a Master Data 
Management solution, but this is beyond the scope of this paper.

As with the Feedback Pattern, the Cross-Referencing Pattern benefits from the inclusion of the Lineage 
Pattern. When relying on an agreement between multiple data sources as to the value of a particular field, 
it is important that the sources being cross-referenced are sourced (directly or indirectly) from independent 
sources that do not carry correlation created by internal modeling.

ATI will utilize a semantic dictionary as a part of the Metadata Transform Pattern described above. This 
dictionary, along with lineage data, will be utilized by a validation step introduced into the conditioning 
processes in the data architecture. Adding this cross-referencing validation reveals the final state architecture:

Conclusion 
This paper has examined for number patterns that can be applied to data architectures. These patterns should  
be viewed as templates for specific problem spaces of the overall data architecture, and can (and often should) 
be modified to fit the needs of specific projects. They do not require use of any particular commercial or open 
source technologies, though some common choices may seem like apparent fits to many implementations of  
a specific pattern.
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