
AI Sඔඝගඑඖ ඎක Cඡඊඍක Sඍඋඝකඑගඡ

Cyber Security is about keeping the information in an enterprise safe. Leaks can happen as a result of malicious
attack, or sometimes just careless, noncompliant actions from staff during routine work. System security software
aims to detect any such activities which can represent an
anomaly in a business workflow, violation of security protocol,
or outright malicious external attacks.

Watching all applications running on all kinds of operating
systems, with a diverse range of third-party applicationssystems, with a diverse range of third-party applications
installed and executing is anything but a straightforward
proposition. A security software agent injects monitoring
and control by keeping tabs on the operating system
internals, meaning basic operations such as file read / writes,
network connections, process start / stops, etc.

Although there is the idea of being non-invasive, the agent’s use of process injection may create serious faults that
could crash the application being monitored. It becomes a perception problem for a cyber security product in that
every time a user sees a blue screen, it’s easy to just blame the monitoring software. For a security software
producer, these user complaints or suspicions cannot be taken lightly, especially at least some of these suspicions
will prove to be valid. Even when a crash happens due to a completely different reason, the security software
company still must do sufficient due diligence to eliminate it’s software agent as the culprit.

Here is where our statistical analysis can make a
significant difference. For example, by collecting
all the crash data and matching them against
installed apps, we make it possible to detect the
level of correlation between each pair of apps,
revealing any possible cause and effect relation
between them. By experimenting specifically withbetween them. By experimenting specifically with
a suspected pair combination, we would be making
it possible to remove the agent software as the
origin of the conflict. It is also of interest to inspect
whether any high correlation instance persists
across os-agent version configurations, and even
across tenants. Each result tells whether the
conflict exists widely or remains isolated. conflict exists widely or remains isolated.

Ideally, the producer would like to, by release time, know
every single scenario where the agent interacts with some
third-party application in an unfriendly way, resulting in a
crash. However, given the number of potential applications
and versions that could co-exist in the same operating
system, It’s quite impossible to rely on a comprehensive
test plan to cover the entire spectrum of os-agent-3rd partytest plan to cover the entire spectrum of os-agent-3rd party
app combinations. Most likely, the company will discover
an errand agent behavior from repeating customer
complaints, with heavy penalties levied on the product’s
reputation.

Tඐඍ Bඔඝඍ Sඋකඍඍඖ ඎ Dඍඉගඐ Dඑඔඍඕඕඉ

BඑඏR.එ Sඍකඞඑඋඍඛ

Cඔඝඛගඍක Dඉගඉ Fඔඟ

Iඖඛගඉඔඔ-Cකඉඛඐ Cකකඍඔඉගඑඖ Dඉගඉ Fඔඟ

Our engagement with a cyber security software company aimed at exactly this exercise. The company’s agent
collects various alerts, crashes, and process information over time. These are aligned with other collected data on
application crashes, ci-resident installed apps and machines that host them. Our analytic code sorts all the raw data
into a data frame consisting of rows of installed-crashed app pairs. Both the size and complexity of the calculation
necessitates acceleration via multi-core parallel processing. The final report has a ranked list of app pairs with their
correlation scores, which can, in turn, breakdown into
os-agent version cells. With the insights from theos-agent version cells. With the insights from the
correlation charts, the engineering team can take the
highest ranking app pairs and validate the relative
likelihood of crashes both with and without the
presence of the client company’s software agent.

Aggregation techniques reveals the correlation
between installed and crashed apps for various
machine environments.

Complete flow of a clustering analysis, with data prep,
class balancing, entity embedding training, and finally
clustering and visualization.

Cකකඍඔඉගඑඖ Sගඝඌඡ

Moving into the next level of analysis, it is possible to apply clustering to the data and visualize whether there are
obvious group behaviors among certain alerts, while incorporating a comprehensive list of attributes, including os,
agent-version, as well as the installed / crashed app data. Given the extraordinary number of possible apps, the
process would first go through encoding and dimensional reduction in a preparatory stage. The os and agent-version
vectors consist of discrete string values that do not directly yield distance information. However, they can be reduced
to numerical vectors by what’s called entity embedding. The resulting numerical vectors would actually retain
meaning semantics, whereby os versions that behave similarly with regard to alerts would be in close proximitymeaning semantics, whereby os versions that behave similarly with regard to alerts would be in close proximity
when plotted on a cluster diagram. It would be interesting, for an example, if for some reason, Windows 10 early
releases all huddle closely, but displays a clear separation from later releases at a particular build number. It
provides insights to guide further analysis.

With all the attributes reduced to numerical vectors of
reasonable dimensions, the reduced data set can then be
clustered and visualized, using chosen security alerts as
the label (represented by a distinct color). It could show,
hypothetically, that alert 001 occurs predominantly when
Mac OS Mojave is combined with a certain range of agent
versions. versions.

A Cඔඝඛගඍකඑඖඏ Aඖඉඔඡඛඑඛ

Cyber security software must run in hyper diverse environments, with almost unlimited possible configurations that
are ever changing. The potential side effect of having the software agent inadvertently crash 3rd party apps leads
to unwarranted user suspicion that all crashes are linked to it, when the real cause may be due to any of the
co-resident 3rd party apps. Isolating the cause-effect relationship behind a crash requires collecting and analyzing
a dataset that is both enormous and high dimensional. The effort starts at the data collection stage, where both the
infrastructure and process must be properly set up to generate reliable and trustworthy inputs. Besides simple
charting of app-pair correlations, a more advanced level of clustering analysis can be done to illustrate group levelcharting of app-pair correlations, a more advanced level of clustering analysis can be done to illustrate group level
behavior among the possible alerts raised by the agent, and how they differ from one machine environment to another.

BigR.io is a US based consulting company with its headquarters in Boston. BigR.io empowers its clients to drive
innovation and achieve the “intelligent enterprise” through the use of contextualized data and sophisticated ML
capabilities. When it comes to Cyber Security, BigR.io has deep experience in proactive cyber and physical security
for equipment and workers, with our excellent expertise in this domain across all phases of the project and the
supporting enterprise functions.supporting enterprise functions. Thus, if you are looking at a test model or a workable process and are interested to
partner with us you can write to us innovation@bigr.io

Cඖඋඔඝඛඑඖ

BigR.io, LLC Harvard Square, One Mifflin Place, Suite 400, Cambridge, MA 02138
(617) 500-5093 | info@bigr.io | www.BigR.io

