Posts

The promises of quantum computing, particularly when combined with AI, are many. However, the technology, while being used in some real-world applications, is still in its infancy, and there are many hurdles yet to be overcome before quantum computers can be implemented on a large scale. However, researchers with Sussex University report that they may have just overcome one of them.

The scientists say that they have managed to transfer data between chips at record speeds and – more importantly – record accuracy.

“What we have achieved here is the ability to realize extremely powerful quantum computers capable of solving some of the most important problems for industries and society,” said lead researcher Prof Winfried Hensinger.

The foundation of the power of quantum computing is drawn from quantum physics, hence its name. Without getting into a complex discussion beyond the scope of this article, quantum computing relies on one of the driving principles of quantum mechanics, namely that subatomic particles can literally exist in two places at the same time and can be in a state of “quantum attachment” mirroring each other’s actions almost simultaneously across unfathomable distances.

Leveraging these properties in the computational space means that quantum computers could potentially handle multiple processes at speeds not possible with even today’s most advance “supercomputers.”

One of the major obstacles to the technology’s development has been the ability to transfer information across chips, so it remains intact. Quantum computers, by design, are highly sensitive and therefore have a low fault tolerance. That means that the slightest interferences can disrupt their effective operation.

The research team at Sussex University demonstrated a way to transfer information between quantum chips with 99.999993% reliability, and the connection rate was 2424/s.

Both set world records, the researchers say, and show it’s possible for quantum chips to be fitted together to build more powerful quantum computers.

Director of the National Quantum Computing Centre, Prof Michael Cuthbert, commented on the findings.

“To build the type of quantum computer you need in the future, you start off by connecting chips that are the size of your thumbnail until you get something the size of a dinner plate. The Sussex group has shown you can have the stability and speed for that step.”

How is This Discovery Relevant to AI?

It is quantum computers that will create astronomical changes in the field of AI. Currently, it can take months to train an AI model to become effective. Quantum computing will speed up AI and machine learning by considerable orders of magnitude.

In fact, IBM has already revealed mathematical proof that quantum machine learning is exponentially faster than standard methods of ML, as long as “one can provide classical data to the algorithm in the form of quantum states.” Although it remains theoretical at this point, if it can be applied, then the future for AI and quantum computing looks very promising indeed.

Furthermore, and perhaps even more significant to the Sussex discoveries, is that the ultimate goal of AI is to recreate, as close as possible, the human mind. Prof Hensinger and his team’s “quantum chip-to-chip” nearly instantaneous transfer of information behaved very much like the neuron-to-neuron communications of the brain. This could have an astounding impact on AI and put us on the path to computers that can truly “think” like humans in every way.

How Big Rio Can Help

Quantum computing is still very much an emerging technology with large-scale and practical applications still a way off. However, the technology is steadily graduating from the lab and heading for the marketplace. In 2019, Google announced that it had achieved “quantum supremacy,” IBM has committed to doubling the power of its quantum computers every year, and numerous other companies and academic institutions are investing billions toward making quantum computing a commercial reality.

Quantum computing will take artificial intelligence and machine learning to the next level. The marriage between the two is an area to pay very close attention to for startups as well as for where Big Tech will be going over the next five to ten years, and where ever this road can take use BigRio will be there to help get startups and society as a whole to its ultimate destination.

You can read much more about how quantum computing will redefine AI and machine learning in my new book Quantum Care: A Deep Dive into AI for Health Delivery and Research. It’s a comprehensive look at how AI is being used to improve healthcare and society as a whole.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

 

AI and “quantum biology” may hold the key to changing medicine forever, maybe even the eradication of all disease!

Imagine a world where cancer, Alzheimer’s disease, Parkinson’s even aging itself have been defeated or can be treated in such a way that everyone can enjoy a long life of strength, vitality, and good health. That is the ultimate promise of artificial intelligence in healthcare, and it is AI combined with quantum computing which is creating the emerging field of “quantum biology” that could make that world a reality.

At its most basic meaning, the term “quantum” refers to something that is so small that it borders on the infinitesimal. In quantum physics, that means the smallest particle possible that still maintains the properties of the matter it is part of. In quantum biology, it may reveal the deepest level of understanding of how the body works and the real impact of disease that has thus far eluded even the most advanced medical science — and quantum computing will help.

Without getting into heavy details on how — quantum computing has processing power and memory capacity that is many orders of magnitude higher than conventional computers. With its ability to process massive amounts of data quickly, quantum computing, when combined with AI algorithms, may provide researchers with the in-depth information they need to unlock the innermost secrets of the human body.
One area where this is, albeit in its infancy, but already occurring is in Pharma research and drug discovery.

With quantum technology, the hope is that drug-trial simulations can eliminate the high development costs, reducing the barriers that prevent pharmaceutical companies from investing in developing treatments for rare diseases, speeding up trials, and improving patient outcomes.

This is especially true for some of the rarest yet most devastating conditions. It is an unfortunate economic reality that innovative treatments for rare diseases, no matter how fatal or debilitating they can be – rarely get developed because it is just too costly, relative to the people that would benefit and therefore pay for any drugs that were developed. But, with AI and quantum computing significantly reducing the costs of drug discovery at every phase – that profit motive can be removed. The development of effective treatment for all diseases, no matter how rare, could be possible, which could radically change healthcare for the better.

AI, Quantum Computing, and “The Virtual Patient”

Besides drug discovery, the other area in healthcare where AI combined with quantum computing is likely to make the biggest paradigm shift is in cognitive digital twin technologies or CDT. In CDT, a “digital twin” of a real-world system is created using AI algorithms. Digital twins are already being used to monitor the “healthspan” of high-value mechanical systems such as cars, boats, and airplanes. NOAA recently announced it is using AI to develop a “digital twin” of the Earth itself to track global climate change.
CDT is already being used in healthcare through the creation of “virtual organs,” which are being used in drug trials. But the Holy Grail of personalized healthcare is the creation of a digital twin of yourself. Just as digital twins of helicopters and fighter jets are used to monitor systems breakdowns for preventive maintenance – once each of us has our own cognitive digital twins, our doctors can monitor us for health issues before they become major concerns.

A “digital patient” will also make very specific and targeted therapeutics a reality, as your doctor can try different drugs on you virtually to see what is the most effective treatment without any fear of side effects or complications. Quantum computing will make the digital twinning of something as complex as the human body possible.
Currently, the pharmaceutical industry, and indeed all of healthcare by its very nature, has to take a one-size-fits-all approach. Every patient with a condition is treated with the same few drugs or treatment options. But know not all drugs are not effective for everyone. Quantum tech will allow doctors to personalize medicines to create uniquely tailored treatments for their patients, which will be a fundamental shift in healthcare.

How Big Rio Can Help

Quantum computing is still very much an emerging technology with large-scale and practical applications still a way off. However, the technology is steadily graduating from the lab and heading for the marketplace. In 2019, Google announced that it had achieved “quantum supremacy,” IBM has committed to doubling the power of its quantum computers every year, and numerous other companies and academic institutions are investing billions toward making quantum computing a commercial reality.

Quantum computing will take artificial intelligence and machine learning to the next level. The marriage between the two is an area to pay very close attention to for startups as well as for where Big Tech will be going over the next five to ten years, and where ever this road can take use BigRio will be there to help get startups and society as a whole to its ultimate destination.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

October is the month for all things spooky, so it’s no wonder that The 2022 Nobel Prize in Physics has been awarded to three scientists whose work provided the groundbreaking “spooky at a distance” relationship in quantum mechanics.

While it is an odd phenomenon, there is nothing “supernatural” about the discovery of “spooky at a distance” behavior of particles. The theory, as proven by the work of the scientists receiving the awards, refers to the way that particles once “bound” together at the quantum level, will still behave as if they were bound, even when they are separated over great distances.

John F. Clauser, Alain Aspect, and Anton Zeilinger won the 10 million Swedish krona ($915,000) prize for “experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science,” the Royal Swedish Academy of Sciences announced on Tuesday Oct. 4.

Albert Einstein who was aware of the phenomenon dubbed it “spooky action at a distance.”

This concept of “quantum entanglement” paves the way for such theoretical applications as teleportation and forms the very real basis for quantum computing. It is this “spooky” behavior of entangled particles that makes quantum computers orders of magnitude more powerful than even the most powerful supercomputers in use today.

A quantum computer in used by Google is said to be 100 million times faster than any of today’s systems.

What is a Quantum Computer?
The main difference between quantum computers and conventional computers is that they do not store and process information in the bits and bytes that we are familiar with, but rather in something else entirely, known as quantum bits, or “qubits.”

All conventional computing comes down to streams of electrical or optical pulses representing 1s or 0s. Everything from your tweets and e-mails to your iTunes songs and YouTube videos are essentially long strings of these binary digits.

Qubits, on the other hand, are typically made up of subatomic particles such as electrons or photons. The very same photons that were involved in the trio of scientists Nobel Prize winning experiments.

Qubits leverage quantum entanglement,” something that Einstein himself called “spooky action at a distance.”

A simple way of understanding “entanglement” is it is an interdependence based on a long an intimate relationship between the two particles, like a child who goes away to college across the country, but still is “dependent” on the support of his or her parents.

In quantum computing, entanglement is what accounts for the nearly incomprehensible processing power and memory of quantum computers. In a conventional computer, bits and processing power are in a 1:1 relationship – if you double the bits, you get double the processing power, but thanks to entanglement, adding extra qubits to a quantum machine produces an exponential increase in its calculation ability.

Quantum computing is still very much an emerging technology with large scale and practical applications still a way off. However, the technology is steadily graduating from the lab and heading for the marketplace. In 2019, Google announced that it had achieved “quantum supremacy,” IBM has committed to doubling the power of its quantum computers every year, and numerous other companies and academic institutions are investing billions toward making quantum computing a commercial reality.

Quantum computing will take artificial intelligence and machine learning to the next level. The marriage between the two is an area to pay very close attention to for startups as well as for where Big Tech will be going over the next five to ten years.

Zeilinger, 77, professor emeritus at the University of Vienna, said during a press conference about the award, “It is quite clear that in the near future we will have quantum communication all over the world.”

Kudos to the Royal Swedish Academy for recognizing the groundbreaking work of the gentlemen that have literally opened the door into another world and the unbridled potential of artificial intelligence and information technology.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.