AI and “quantum biology” may hold the key to changing medicine forever, maybe even the eradication of all disease!

Imagine a world where cancer, Alzheimer’s disease, Parkinson’s even aging itself have been defeated or can be treated in such a way that everyone can enjoy a long life of strength, vitality, and good health. That is the ultimate promise of artificial intelligence in healthcare, and it is AI combined with quantum computing which is creating the emerging field of “quantum biology” that could make that world a reality.

At its most basic meaning, the term “quantum” refers to something that is so small that it borders on the infinitesimal. In quantum physics, that means the smallest particle possible that still maintains the properties of the matter it is part of. In quantum biology, it may reveal the deepest level of understanding of how the body works and the real impact of disease that has thus far eluded even the most advanced medical science — and quantum computing will help.

Without getting into heavy details on how — quantum computing has processing power and memory capacity that is many orders of magnitude higher than conventional computers. With its ability to process massive amounts of data quickly, quantum computing, when combined with AI algorithms, may provide researchers with the in-depth information they need to unlock the innermost secrets of the human body.
One area where this is, albeit in its infancy, but already occurring is in Pharma research and drug discovery.

With quantum technology, the hope is that drug-trial simulations can eliminate the high development costs, reducing the barriers that prevent pharmaceutical companies from investing in developing treatments for rare diseases, speeding up trials, and improving patient outcomes.

This is especially true for some of the rarest yet most devastating conditions. It is an unfortunate economic reality that innovative treatments for rare diseases, no matter how fatal or debilitating they can be – rarely get developed because it is just too costly, relative to the people that would benefit and therefore pay for any drugs that were developed. But, with AI and quantum computing significantly reducing the costs of drug discovery at every phase – that profit motive can be removed. The development of effective treatment for all diseases, no matter how rare, could be possible, which could radically change healthcare for the better.

AI, Quantum Computing, and “The Virtual Patient”

Besides drug discovery, the other area in healthcare where AI combined with quantum computing is likely to make the biggest paradigm shift is in cognitive digital twin technologies or CDT. In CDT, a “digital twin” of a real-world system is created using AI algorithms. Digital twins are already being used to monitor the “healthspan” of high-value mechanical systems such as cars, boats, and airplanes. NOAA recently announced it is using AI to develop a “digital twin” of the Earth itself to track global climate change.
CDT is already being used in healthcare through the creation of “virtual organs,” which are being used in drug trials. But the Holy Grail of personalized healthcare is the creation of a digital twin of yourself. Just as digital twins of helicopters and fighter jets are used to monitor systems breakdowns for preventive maintenance – once each of us has our own cognitive digital twins, our doctors can monitor us for health issues before they become major concerns.

A “digital patient” will also make very specific and targeted therapeutics a reality, as your doctor can try different drugs on you virtually to see what is the most effective treatment without any fear of side effects or complications. Quantum computing will make the digital twinning of something as complex as the human body possible.
Currently, the pharmaceutical industry, and indeed all of healthcare by its very nature, has to take a one-size-fits-all approach. Every patient with a condition is treated with the same few drugs or treatment options. But know not all drugs are not effective for everyone. Quantum tech will allow doctors to personalize medicines to create uniquely tailored treatments for their patients, which will be a fundamental shift in healthcare.

How Big Rio Can Help

Quantum computing is still very much an emerging technology with large-scale and practical applications still a way off. However, the technology is steadily graduating from the lab and heading for the marketplace. In 2019, Google announced that it had achieved “quantum supremacy,” IBM has committed to doubling the power of its quantum computers every year, and numerous other companies and academic institutions are investing billions toward making quantum computing a commercial reality.

Quantum computing will take artificial intelligence and machine learning to the next level. The marriage between the two is an area to pay very close attention to for startups as well as for where Big Tech will be going over the next five to ten years, and where ever this road can take use BigRio will be there to help get startups and society as a whole to its ultimate destination.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

Most patients and every medical practitioner know that when it comes to chronic debilitating diseases, the earlier they can be detected and treated, the better. This is one of the major promises of AI in healthcare, improved diagnostics for earlier detection and better patient outcomes.

The latest such application comes as researchers are developing an AI solution that can find the early sign of osteoarthritis of the knee. Like many AI-driven diagnostic enhancements, this one can see subtle signs on X-rays better than the human eye. This is critical because x-rays are the primary diagnostic method for early knee osteoarthritis. An early diagnosis can save the patient from unnecessary examinations, treatments, and even knee replacement surgery.

Osteoarthritis is the most common joint-related ailment globally. In Finland alone – where this research took place — it causes as many as 600,000 medical visits every year. It has been estimated to cost the national economy up to EUR1 billion every year.

The new AI-based method was trained to detect a radiological feature predictive of osteoarthritis from x-rays. The method was developed in cooperation with the Digital Health Intelligence Lab at the University of Jyvaskyla as a part of the AI Hub Central Finland project. It utilizes neural network technologies that are widely used globally.

“The aim of the project was to train the AI to recognize an early feature of osteoarthritis from an x-ray. Something that many experienced doctors can visually distinguish from the image, but cannot be done automatically, and is often missed by the untrained eye,” explains Anri Patron, the researcher responsible for the development of the method.

The anomaly the AI has been trained to automatically detect is to see if there is “spiking” on the tibial tubercles in the knee joint or not. Tibial spiking is known to be an early sign of osteoarthritis.

The researchers say that the AI matched human doctors’ assessment of the presence of spiking in nearly 90% of cases, instantly, without the need to scrutinize and deeply examine the x-rays as the human orthopedic surgeons did.

The research offers definitive proof that AI can support early diagnosis of osteoarthritis at the point of primary healthcare before a patient is referred to an orthopedic specialist, which can make a major difference in catching and treating knee arthritis early.

“If we can make the diagnosis in the early stages, we can avoid uncertainty and expensive examinations such as MRI scanning. In addition, the patient can be motivated to take measures to slow down or even stop the progression of symptomatic osteoarthritis. In the best possible scenario, the patient might even avoid joint replacement surgery,” sums up professor of surgery Juha Paloneva, one of the Finnish researchers on the project.

How BigRio Helps Healthcare AI Startups

Like the technology developed by the researchers with the Central Finland Health Care District, BigRio is also a facilitator and incubator for AI startups, particularly in healthcare. In fact, it was my father’s own battle with and eventual death from lung disease that set me on my path to finding ways to use AI to improve healthcare delivery.
Eventually, among our other success stories, we did collaborate with a researcher who is in the process of developing a cognitive digital twin of the human lung. Right now, that technology is being used specifically in the realm of testing inhalers for asthma patients, but like the UWS tool, it has broader implications for better diagnostics and treatments for COPD and other lung diseases.
We like to think of ourselves as a “Shark Tank for AI.”

If you are familiar with the TV series, then you know that, basically, what they do is hyper-accelerate the most important part of the incubation process – visibility. You can’t get better visibility than getting in front of celebrity investors and a TV audience of millions of viewers. Many entrepreneurs who have appeared on that program – even those who did not get picked up by the sharks – succeeded because others who were interested in their concepts saw them on the show.

At BigRio, we may not have a TV audience, but we can do the same. We have the contacts and the expertise to not only weed out the companies that are not ready, as the sharks on the TV show do but also mentor and get those that we feel are readily noticed by the right people in the biomedical community.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

Some of the most innovative advances in AI are not taking place in the US; there are some powerful incubators all through Europe and places such as Israel. In fact, six of the most impressive new AI startups are all based in Austria!

Those that follow the IT industry have long pointed out that Austria has been the up-and-coming “Silicon Valley” of Europe, attracting very high-caliber talent and enabling some impressive AI startups. Here are six quite noteworthy AI startups that are located in Austria.

1. Adverity
Adverity, founded in 2015, assesses and visualizes expenses, performance, and returns. The program integrates campaign data from hundreds of data sources, including LinkedIn, Google Ads, and Facebook, before sending the findings to business management systems via native connectors. According to Marktechpost, the California-based AI news hub, the platform is used by well-known companies like Red Bull, IKEA, and Zurich Insurance and is accessible to agencies, brands, and e-commerce providers.

2. Robart
Also established in Austria, Robart provides full AI navigation solutions for mobile robots, including hardware, software, and connected IoT applications such as your robotic vacuum and similar devices. Using Robart’s solutions, robots can map a whole home, categorize it into rooms, design particular cleaning procedures, identify deviations like an open window, learn user patterns, and adjust to changes in user habits.

3. Cortical.io
Cortical.io provides free access to rudimentary tools like term disambiguation, text comparison, and keyword extraction on its website. The developers claim that such tools can reduce the time-consuming task of reviewing complex documents such as legal contracts by as much as 80%.

4. Medicus AI
Medicus AI created a medical app that explains and analyzes blood tests and medical reports and gives customers individualized healthcare recommendations in line with its results. Like Adverity the company was also founded in Austria in 2015. Medicus AI supports hospitals, diagnostic labs, and other healthcare facilities by improving interactions with patients by providing simple-to-understand health reports, guiding patients through disease treatment and prevention, as well as providing remote monitoring of patient behavior to ensure compliance and enhance long-term health outcomes.

5. Semanticlabs
Austria-based Semanticlabs creates tools for large-scale data analyses, such as semantic algorithms. The company has developed out-of-the-box solutions for collaborative document management, automated tagging, and topic extraction from text using techniques for natural language processing. According to Marktechpost, their customers include Kronen Zeitung, the largest newspaper in Austria, and Erste Group, one of the largest financial service providers in Central and Eastern Europe.

6. Scarlet red
Scarletred is another AI healthcare solution designed to improve diagnostics, in this case, for the remote detection of various skin disorders. The company was founded in 2014. The platform comprises a web tool for picture processing, an iOS app, and a skin patch that calibrates photographs for different light and distance situations. Patients upload a photo of the region being examined and their skin tag to their healthcare provider’s online portal using the iOS app. The automated skin area analysis is then performed by the web-based analytical platform using computer vision.

How BigRio Helps Facilitate Investment in AI Startups
Like the agencies and investors who are helping places like Austria become hubs of AI innovation, BigRio is also a powerful facilitator and incubator for AI startups in the US and around the world. We specialize in bringing healthcare AI solutions such as Medicus AI and Scarletred mentioned above to market.

We like to think of ourselves as a “Shark Tank for AI.”

If you are familiar with the TV series, then you know that, basically, what they do is hyper-accelerate the most important part of the incubation process – visibility. You can’t get better visibility than getting in front of celebrity investors and a TV audience of millions of viewers. Many entrepreneurs who have appeared on that program – even those who did not get picked up by the sharks – succeeded because others who were interested in their concepts saw them on the show.

At BigRio, we may not have a TV audience, but we can do the same. We have the contacts and the expertise to not only weed out the companies that are not ready, as the sharks on the TV show do but also mentor and get those that we feel are readily noticed by the right people who have a vested interest in advancing AI and Machine learning technologies.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

According to a new report, major consumer demand for smart cars, smart homes, and other buildings in “smart cities” is driving significant expansion in the AI chip market.

“Smart cities” are the latest growth area in AI. A “smart city” refers to a city that uses digital or information-communication technology to improve the comfort and efficiency of human life. One strategy for urbanization that aims to achieve sustainable growth is making cities equipped with cutting-edge features for residents to live, walk, shop, and enjoy a safer and more convenient existence – much of which is now being driven by AI.

For instance, in March 2022, Saudi Arabia launched a new smart city project in Jeddah for light industries and auto repair, opening the first two stages of the city, the second of which is a 350-square-mile labor city. A total of three thousand square miles is covered by the Smart City initiative. Further, According to Saudi Vision 2030, a Saudi Arabia-based strategic framework, the city is distinguished by an interconnected infrastructure and the application of digital and smart technology to offer automated services to customers.

According to The Business Research Company’s Artificial Intelligence Chip Global Market Report 2022, the increase in demand for smart homes and smart cities is driving significant artificial intelligence chip market growth. Per the report, the global artificial intelligence chip market size is expected to grow from $10.55 billion in 2021 to $15.01 billion in 2022 at a compound annual growth rate (CAGR) of 42.3%.

The press release went on to say that technological advancement is a key trend gaining popularity in the artificial intelligence chip market. Major companies in the artificial intelligence chip market, like NVIDIA, are advancing in their new technologies and focusing much of their R&D specifically on AI chips, such as the development of NVIDIA A100 chips which have been designed to streamline AI training and inference and improve efficiency.

The report also said that the major players in the artificial intelligence chip market are Intel Corporation, Mediatek Inc, NVIDIA Corporation, Qualcomm Technologies Inc, Advanced Micro Devices Inc, Alphabet Inc, NXP Semiconductors NV, Micron Technology Inc, IBM Corporation, Apple Inc, Huawei Technologies Co. Ltd, Mythic Inc, Samsung Electronics Co. Ltd, LG Corporation, and Google LLC.

North America was the largest region in the artificial intelligence market in 2021. The regions covered in this artificial intelligence chip market research are Asia-Pacific, Western Europe, Eastern Europe, North America, South America, the Middle East, and Africa.

The report also gives an in-depth analysis of the impact of COVID-19 on the market. The reports draw on 1,500,000 datasets, extensive secondary research, and exclusive insights from interviews with industry leaders.

AI and CarTwin

In addition to increasing demand for smart chips for fully autonomous vehicles, the other major impact that AI is having on the automotive and transportation industry is in the use of cognitive digital twin technologies for predictive maintenance. Digital twin solutions like those developed by CarTwin extend the lifespan of cars and other vehicles by monitoring the vehicle’s “health” through its “digital twin.”

Basically, CarTwin can provide diagnostic and predictive models for all vehicle systems for which data is available (either directly or indirectly) onboard the vehicle.

Virtually any part of the vehicle that has sensors or that sensors can be developed for can be “twinned.” These data sets are then enhanced and augmented with design and manufacturing data that is already available by the OEM.

Primarily designed for use in fleets of vehicles, in combination with powerful AI models, CarTwin predicts breakdowns, monitors and improves performance, and measures and records real-time greenhouse gas emissions, which reduces expensive maintenance costs and avoids lost revenue associated with fleet downtime.

It is very likely in the not-too-distant future, as fully autonomous vehicles replace human-driven fleets of over-road cargo transportation and taxis and limousine services, that technology such as CarTwin’s will also be incorporated into the algorithms to keep these vehicles not only self-driving but safe and on the road longer.

Rohit Mahajan; is a Managing Partner at BigRio and the President and Co-Founder of Citadel Discovery. He has a particular expertise in the development and design of innovative AI and machine learning solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

CarTwin has leveraged AI and Digital Twin technologies to create a digital, cloud-based clone of a physical vehicle designed to detect, prevent, predict, and optimize through AI and real-time analytics. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

Urinary tract infections, commonly known as UTIs, usually do not pose serious health risks – when they are detected and treated early. However, when allowed to advance undetected past a certain point, a number of serious adverse outcomes can result from late or misdiagnosis of UTI.

A group of researchers from the University of Edinburgh and Heriot-Watt University are developing artificial intelligence and “socially assistive robots” to detect urinary tract UTIs earlier and ensure better patient outcomes.

UTIs affect 150 million people worldwide annually, making it one of the most common types of infection. When diagnosed early, it can be treated with antibiotics. If left untreated, UTIs can lead to sepsis, kidney damage, and even loss of life.

Diagnosis, however, can be difficult with lab analysis, a process taking up to 48 hours, providing the only definitive result. Early signs of a UTI can also be challenging to recognize because symptoms vary according to age and existing health conditions. There is no single sign of infection but a collection of symptoms which may include pain, fever, increased need to urinate, changes in sleep patterns, and tremors.

To address these concerns, the researchers are working with two industry partners from the care sector who are helping the scientists to develop machine learning methods and interactions with socially assistive robots to support earlier detection of potential infections and raise an alert for investigation by a clinician.

The project will gather continual data about the daily activities of individuals in their homes via sensors that could help spot changes in behavior or activity levels and trigger an interaction with a socially assistive robot. Known as “FEATHER,” the AI platform will combine and analyze these data points to flag potential infection signs before an individual or caretaker is even aware that there is a problem. Behavioral changes that could indicate UTI include changes in walking pace, increased frequency of urination, changes in cognitive function, or a change in sleep patterns, all of which could be noticed and documented by interaction with the assistive robot.

The AI and implementation aspects of the project will be led by Professor Kia Nazarpour, Dr. Nigel Goddard, and Dr. Lynda Webb from the University of Edinburgh. The Human-Robot Interaction aspects will be led by Professor Lynne Baillie, assisted by Dr. Mauro Dragone, from Heriot-Watt University.

Professor Kia Nazarpour, project lead and Professor of Digital Health at the School of Informatics, University of Edinburgh, said, “This unique data platform will help individuals, caretakers, and clinicians to recognize the signs of potential urinary tract infections far earlier, helping to prompt the investigations and medical tests needed. Earlier detection makes timely treatment possible, improving outcomes for patients, lowering the number of people presenting at hospital, and reducing costs to the NHS.”

How BigRio Helps Bring Advanced AI Solutions to Healthcare

Like the FEATHER project, improving disease detection, medical imaging, and diagnostics is an area where AI and machine learning are making one of the technology’s biggest impacts.

BigRio prides itself on being a facilitator and incubator for such advances in leveraging AI to improve diagnostics. In fact, it was my father’s own battle with and eventual death from lung disease that set me on my path to finding ways to use AI to provide earlier detection of serious medical conditions for improved patient outcomes.

Eventually, among our other success stories, we did collaborate with a researcher who is in the process of developing a cognitive digital twin of the human lung. Right now, that technology is being used specifically in the realm of testing inhalers for asthma patients, but like the FEATHER UTI detection tool, it has broader implications for better diagnostics and treatments for COPD and other lung diseases.

We like to think of ourselves as a “Shark Tank for AI.”

If you are familiar with the TV series, then you know that, basically, what they do is hyper-accelerate the most important part of the incubation process – visibility. You can’t get better visibility than getting in front of celebrity investors and a TV audience of millions of viewers. Many entrepreneurs who have appeared on that program – even those who did not get picked up by the sharks – succeeded because others who were interested in their concepts saw them on the show.

At BigRio, we may not have a TV audience, but we can do the same. We have the contacts and the expertise to not only weed out the companies that are not ready, as the sharks on the TV show do but also mentor and get those that we feel are readily noticed by the right people in the biomedical community.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

A cognitive digital twin is an AI-driven representation of a real-world system. The objects being twinned can be mechanical such as vehicles, ships, and airplanes, or biological, such as organs and biological processes. It is the latter that is radically altering pharmaceutical research and may very well change the nature of clinical drug trials forever.

Traditional drug discovery is a long and complex process that can take years and millions and millions of dollars. The long and intensive process of bringing a new drug through all phases of clinical trials and to market starts with recruiting the right candidates and then proceeds through many steps and phases of testing the drugs vs. placebos in the candidates that have been recruited for the trial.

Finding those patients is one of the most time-consuming aspects of the process. But that is all changing thanks to AI and, specifically, cognitive digital twin (CDT) technologies.

Cognitive digital twins behave virtually the same way, statistically, as their physical counterparts, which makes them ideal for the powerful ability of AI to assimilate massive amounts of data and make remarkably accurate predictions.

Digital twins have been used quite effectively for monitoring health and providing preventive maintenance for some very highly complex systems, such as high-performance sports cars to military aircraft.

Now, they are changing the very landscape of drug discovery by modeling perhaps the most complex system of all organs and even complete human beings. For example, digital twins of patients are now being used to find ideal candidates in that all-important recruitment phase of a drug trial. The twin is created using AI algorithms and machine learning to create a “virtual patient” by leveraging data from previous clinical trials and from individual patient records. The model predicts how the patient’s health would progress during the course of the trial.

This kind of CDT technology is also being used to create “virtual patients” who are “stand-ins” for the control group – the ones getting a placebo – in the typical double-blind drug trial protocol. The digital twin patient predicts how that individual patient would react if they were given a placebo, essentially creating a simulated control group for a particular patient. Think of it as splitting yourself into two distinct exact copies of yourself, one given the actual drug and the other given the placebo as a control. This makes for an even more accurate control group than just splitting all those in the trial into two groups as in typical trials, because the control group is now exactly the same as the group getting the drug. The digital twin virtually eliminates any variance between the drug group and the placebo group that could be based on genetic, physical, and lifestyle differences between the two groups.

Furthermore, replacing or augmenting control groups with digital twins could help patient volunteers as well as researchers. Most people who join a trial do so, hoping to get a new drug that might help them when already-approved drugs have failed. But there’s a 50/50 chance they’ll be put into the control group and won’t get the experimental treatment. Replacing control groups with digital twins could mean more people have access to experimental drugs.

In Silico Research

And finally, another area where CDT technology is making a tremendous difference in drug discovery is in the emerging area of “in silico” research, where digital twinning is used to create so-called “organs on a chip.” Digital twins of the human heart, lungs, and other organs are already being used to hyper-accelerate drug discovery.

One of the promises of CDT is to make complete in silico drug trials from start to finish a reality. Early successes occurring now are paving the way to a time in the not-so-distant future where no humans, nor animals, not even a single living cell will be required for drug discovery — and yet the impact of any given therapeutic or treatment option on a targeted organ, system or even an individual cell can be perfectly charted.

Citadel and AI for Drug Discovery

AI and machine learning are having a tremendous impact on healthcare in America, from streamlining hospital operations, to improved diagnostics and more intuitive telemedicine applications. However, AI’s greatest impact will likely be in the way digital twins and other AI solutions are revolutionizing pharmaceutical research.

To that end, Citadel Discovery was launched in 2021 with the purpose of giving a kind of “open access” to the data and technology that will drive the future of pharma research streamlining and lowering the costs of drug discovery and biological research.

The costs of drug discovery continue to rise, with current estimates exceeding $2 Billion. Not to mention that bringing a drug successfully through all clinical trial phases takes, on average, 10-12 years in research and development. Artificial intelligence and machine learning in drug discovery hold the key to reducing these costs and timelines.

Rohit Mahajan is the President and Co-Founder of Citadel Discovery. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

Citadel Discovery is dedicated to leveraging AI and MI for the purpose of democratizing access to the data and technology that will drive the future of biological exploration, drug discovery, and health technologies. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

A digital twin is a digital representation of a physical object or system. Cognitive digital twin (CDT) technology uses AI to create highly sophisticated “twins” or models to accurately mimic a real-world object. That object could be a car, an airplane, ship, or helicopter. Increasingly in the healthcare field, CDT has been used to “twin” organs and biological systems for research, diagnostics, and health maintenance. Digital twins have even been built to represent and understand regions and cities.

Now, in perhaps one of the most complex and ambitious uses of CDT to date, the National Oceanographic and Atmospheric Association (NOAA) has announced its plans to create a digital twin of the planet Earth to track global warming and other environmental issues!

The agency has partnered with NVIDIA and Lockheed Martin to construct the Earth Observation Digital Twin, an inaugural prototype of Earth modeled on real-time geophysical data sourced from satellites and ground stations.

According to NOAA, the replica Earth, or EODT, will be designed as a two-dimensional computer program. Some potential climate impacts the EODT can display include global glacier melting, drought impacts, wildfire prediction, and other climate change events.

“We’re providing a one-stop shop for researchers, and for next-generation systems, not only for current, but for recent past environmental data,” Lockheed Martin Space Senior Research Scientist Lynn Montgomery said. “Our collaboration with NVIDIA will provide NOAA a timely, global visualization of their massive datasets.”

Emerging technologies like artificial intelligence play a key role in EODT’s data processing and modeling. Matt Ross, a senior manager at Lockheed Martin, said that the sheer volume and diversity of data from NOAA sources that program EODT make it challenging to gauge accurate insights from the application without the use of AI.

“This data happens to come in different formats, because the data are so diverse, because it’s measuring so much different stuff,” Ross said. “It arrives in different formats that, absent technology, it could make it very, very difficult to gain the insights that NOAA needs to make decisions.”

Leveraging the power of AI and machine learning algorithms will help NOAA researchers assimilate and identify the incoming data, as well as detect any anomalies. Ross added that the combined power of AI and ML data processing is key to Lockheed and NVIDIA’s “digital twin” programming technology in that it can accurately model past data as well as future realities, all in an intractable and real-time interface.

While both NVIDIA and Lockheed intend for the final deliverable to be a two-dimensional user experience, additional capabilities may be added in the future.

“The fact that we can pull all this data into a single sort of format, in a single viewpoint, allows you to have real-time or near real time, access to it, and the interdependencies of that data to make real-time decisions,” said Dion Harris, the lead product manager of accelerated computing at NVIDIA.

Other Industries Benefiting from Digital Twin Technologies

In addition to paving the way for a digital twin of the planet itself to monitor climate change, AI and digital twinning are revolutionizing many other industries, chief among them transportation. Just as CDT can monitor the health of the Earth, cognitive digital twin technologies are proving invaluable for predictive maintenance of high-value military vehicles, airplanes, ships, and even passenger cars. Digital twin solutions like those developed by CarTwin extend the lifespan of cars and other vehicles by monitoring the vehicle’s “health” through its “digital twin.”

Basically, CarTwin can provide diagnostic and predictive models for all vehicle systems for which data is available (either directly or indirectly) onboard the vehicle.

Virtually any part of the vehicle that has sensors or that sensors can be developed for can be “twinned.” These data sets are then enhanced and augmented with design and manufacturing data that is already available by the OEM.

Primarily designed for use in fleets of vehicles, in combination with powerful AI models, CarTwin predicts breakdowns, monitors and improves performance, measures and records real-time greenhouse gas emissions, which reduces expensive maintenance costs and avoids lost revenue associated with fleet downtime.

Rohit Mahajan is a Managing Partner at BigRio and the President and Co-Founder of Citadel Discovery. He has a particular expertise in the development and design of innovative AI and machine learning solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

CarTwin has leveraged AI and Digital Twin technologies to create a digital, cloud-based clone of a physical vehicle designed to detect, prevent, predict, and optimize through AI and real-time analytics. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

One of the country’s leading comprehensive cancer centers has just announced that it is tapping an artificial intelligence-powered drug discovery platform to aid its development of novel cancer therapeutics.

The center is working with AI developer Exscientia to aid its discovery of new cancer drugs. According to an MD Anderson press release, the collaboration will start with “jointly identified oncology targets and then employ Exscientia’s AI platform to design small-molecule drugs.” The resulting candidates will be examined by MD Anderson’s Therapeutics Discovery division and its Institute for Applied Cancer Science, and the most promising prospects will potentially advance into clinical proof-of-concept studies at the Houston cancer center.

MD Anderson’s drug discovery institute, known as IACS, and the cancer center’s other teams have to date helped graduate at least five small-molecule and antibody-based therapies into early-stage clinical testing, including through collaborations with Bristol Myers Squibb, Ionis, Astellas and more.

The financial terms of the joint venture were not disclosed; however, in their announcement, Exscientia and MD Anderson said they will “jointly contribute to and support each program” that is targeted for development.

Exscientia, has been a leader in AI-driven design of large-molecule drugs and antibody therapies. In addition to partnering with facilities such as MD Anderson and well-known pharmaceutical companies, earlier this year, Exscientia found itself with the rights to develop a drug of its own. After wrapping up an AI collaboration with Bayer to develop targets in cancer and cardiovascular disease, the two companies announced that Exscientia would retain the option to develop one of the two targets.

Citadel and AI for Drug Discovery

Similar to the partnership between Exscientia and MD Anderson, Citadel Discovery is sharing knowledge and expertise to better enable drug discovery by providing access to data, models, and results discounted for academics and by developing a sharing platform and an expanded list of drug targets.

Citadel was launched in 2021 with the purpose of giving a kind of “open access” to the data and technology that will drive the future of pharma research streamlining and lowering the costs of drug discovery and biological research.

The costs of drug discovery continue to rise, with current estimates exceeding $2 Billion. Not to mention that bringing a drug successfully through all clinical trial phases takes, on average, 10-12 years in research and development. Artificial intelligence and machine learning in drug discovery hold the key to reducing these costs and timelines.

Rohit Mahajan is a Managing Partner at BigRio and the President and Co-Founder of Citadel Discovery. He has a particular expertise in the development and design of innovative AI and machine learning solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

CarTwin has leveraged AI and Digital Twin technologies to create a digital, cloud-based clone of a physical vehicle designed to detect, prevent, predict, and optimize through AI and real-time analytics. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

As AI continues to advance in this digital age, in what seems the ever-increasing conflict between man and machine, the one bastion where “man” held out hope of dominance was the arts. However, even that may just be wishful thinking, as recently, there has been an increasing amount of “art” in artificial intelligence!

Some interesting and perhaps somewhat disturbing cases, in point, have been the introduction of “text-to-image” AI tools such as Midjourney and Stable Diffusion.

These programs have become wildly popular, with their remarkable ability to take language prompts from human users and translate them into original images. Another such platform, Dall-E, is now producing 2 million images a day, including some uncannily realistic creations as well as some surreal abstracts inspired by human’s stated feelings.

What does this mean for the future of AI, AI startup opportunities, and, more importantly, to human artists and the one field that they had hoped would hold the line between man and machine?

When you use a text-to-image AI tool like Midjourney, you type in a phrase that describes what you want — for example, “A father feeling grief in the style of Van Gogh.”

In less than a minute, Midjourney produces four original images it thinks may match the prompt. You can then pick the image that you like best, create new variations based on that image, and refine them from there.

The private sector is already starting to realize the program’s potential, said David Holz, the founder of Midjourney, speaking to Marketplace.

“Business owners, game designers, people in the movie industry are using it,” he said.

About 30% of Midjourney’s users are professionals who use it primarily to brainstorm for commercial projects, Holz said, adding that tech like Midjourney will change how artists work.

But smart employers won’t use it to replace them. At least, that is the hope among the creative community.

“Some people will see this as an opportunity to cut costs and have the same quality,” Holtz said. “They will fail,” he added.

Artists who are using these kinds of programs do not feel they are “cheating” any more than an architect or engineer who uses CAD cam. They are still channeling their creativity; they are just using an advanced tool to do so.

While purists remain and have been raising alarms on social media about AI replacing human creativity, those artists that have embraced the technology say they are still creating “art” it is simply art that may belong in a very different category, just like computer graphic art differs from oil painting, but they are both undeniable art, created by artists.

What do you think?

Rohit Mahajan is a Managing Partner at BigRio and the President and Co-Founder of Citadel Discovery. He has a particular expertise in the development and design of innovative AI and machine learning solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

CarTwin has leveraged AI and Digital Twin technologies to create a digital, cloud-based clone of a physical vehicle designed to detect, prevent, predict, and optimize through AI and real-time analytics. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

The automotive sector has been one of the hardest industries hit by and since the pandemic. Rampant inflation, a chip shortage, and other global economic factors have new car demand low and prices high. Which all means that automotive consumers are choosing to keep their older cars longer.

AI is helping car owners do exactly that by providing solutions that can help drivers and repair shops diagnose current problems on their cars and anticipate future repair and service needs – which can all extend the lifespan of their vehicles.

However, whereas most of the AI-driven auto diagnostic solutions that are becoming available are “apps” that are designed to be used by the individual consumer or repair shop, CarTwin is a machine learning/digital twin technology that has been designed for fleet operators and auto manufacturers by allowing the use of AI for predictive maintenance on a much grander scale.

Having proved itself in the field with a well-known German manufacturer of high-performance vehicles, CarTwin now serves the shifting needs of the auto industry with an AI-driven solution that enables a diverse set of automotive use cases. CarTwin creates unique innovations and unique opportunities by connecting the physical and digital worlds, which can provide real-time operational awareness of vehicle, component, and manufacturing performance.

“The automotive industry has witnessed an incredible transformation over the last decade. CarTwin represents the next chapter in its digital disruption. We’re leveraging artificial intelligence, industry expertise, and easy-to-use tools to provide the most complete Digital Twin technology blueprint available today,” says Corey Thompson, CEO of CarTwin.

Basically, CarTwin can provide diagnostic and predictive models for all vehicle systems for which data is available (either directly or indirectly) onboard the vehicle.

“As an example, for the project with our OEM, we have already built models for the suspension and battery systems and are continuing to add additional systems as we move along. Our POC project will add the ignition system, fuel system, and turbocharging system,” says Thompson.

Virtually any part of the vehicle that has sensors or that sensors can be developed for can be “twinned.” These data sets will be augmented with design and manufacturing data that is already available by the OEM.

CarTwin obtains its data from the “CAN Bus,” which is basically the “communication network” on a vehicle that enables data acquisition also in real-time. CarTwin utilizes the data from the CAN Bus, as well as historical data about the inspection, repair, and parts replacement from the service centers, to build our models. This means that it can be used in any vehicle that is newer than 1996 when the CAN Bus started to be used.

The platform records and utilizes the data streaming through fleet vehicles. In combination with powerful AI models CarTwin predicts breakdowns, monitors and improves performance, measures and records real time greenhouse gas emissions, reduces expensive maintenance costs and avoids lost revenue associated with fleet downtime. Insights from CarTwin help reduce the carbon footprint and it benefits corporate ESG (Environmental, Social and Governance) objectives

“Most importantly, says Thompson, “our solutions require little to no infrastructure improvements for our customers to experience significant competitive advantages, we have devices for purchase that simply plug into the vehicle OBD (onboard computer) ports.”

“Additionally, CarTwin provides carbon footprint intensity and reporting to meet corporate ESG objectives, Thompson adds. Our CarbonLess tool can identify how and where you can save fuel. And fleet operators can use CarbonLess to monitor and identify anomalous CO2 and NOx emissions.

Rohit Mahajan is a Managing Partner at BigRio and the President and Co-Founder of Citadel Discovery. He has a particular expertise in the development and design of innovative AI and machine learning solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

CarTwin has leveraged AI and Digital Twin technologies to create a digital, cloud-based clone of a physical vehicle designed to detect, prevent, predict, and optimize through AI and real-time analytics. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.