Posts

New research shows how a machine-learning technique could provide insight into how to find the patients that would benefit the most from treatment for hypertension.

The study, which came out of UCLA, describes how a machine-learning technique known as “casual forest” could determine the hypertension patients that would benefit the most from treatment rather than assuming that the highest-risk patients require the most clinical attention.

According to the Centers for Disease Control and Prevention (CDC), over 670,000 deaths in the US can be attributed annually to hypertension. In addition, while about 47 percent of US adults have hypertension, only 24 percent of this population has the condition under control.

Traditionally, clinicians treating patients with high blood pressure focus on those with the highest risk of poor outcomes, as the assumption is that they will require the highest level of treatment. The researchers set out to see if they could leverage AI to treat patients based on benefit rather than risk for improved outcomes. They found their solution in a new ML technique, coined “casual forest.”

The study included data from 10,672 participants, all of whom were randomized to systolic blood pressure (SBP) targets of either less than 120 mmHg or less than 140 mmHg from two randomized controlled trials.

The researchers used the casual forest technique to create a prediction model of individualized treatment effects related to the control of SBP and its correlation with reductions in adverse cardiovascular outcomes after three years.

They found that 78.9 percent of individuals with an SBP greater than 130 mmHg achieved benefits from intensive SBP control.

“We found that a substantial number of individuals without hypertension benefited from lowering their blood pressure,” said lead author Kosuke Inoue, MD, Ph.D., who undertook the study while an epidemiology graduate student at the UCLA Fielding School of Public Health and is now an associate professor of social epidemiology at Kyoto University, in a press release. “By applying the causal forest method, we found that treating individuals with high estimated benefits provided better population health outcomes than the traditional high-risk approach.”

Further, the researchers noted that high-benefit approaches could increase the efficacy associated with treatment, potentially being more reliable compared to high-risk approaches.

How BigRio Helps Bring Advanced AI Solutions to Healthcare

As the UCLA researchers have discovered, improving disease detection and making better decisions on the allocation of medical resources is an area where AI and machine learning are making a huge impact in healthcare.

BigRio prides itself on being a facilitator and incubator for such advances in leveraging AI to improve treatment and medical outcomes. In fact, it was my father’s own battle with and eventual death from lung disease that set me on my path to finding ways to use AI to provide earlier detection of serious medical conditions.

In fact, we have launched an AI Studio specifically for US-based Healthcare startups with AI centricity. Our mission is to help AI startups scale and gear up to stay one step ahead of the pack and emerge as winners in their respective domains.

AI Startups face numerous challenges when it comes to demonstrating their value proposition, particularly when it comes to advanced AI solutions for pharma and healthcare. We have taken an award-winning and unique approach to incubating and facilitating startups that allow the R&D team and stakeholders to efficiently collaborate and craft the process to best suit actual ongoing needs, which leads to a faster, more accurate output.

We provide:

  • Access to a top-level talent pool, including business executives, developers, data scientists, and data engineers.
  • Assistance in the development and testing of the MVP, Prototypes, and POCs.
  • Professional services for implementation and support of Pilot projects
  • Sales and Marketing support and potential client introductions.
  • Access to private capital sources.

BigRio excels in overcoming such initial hurdles, which present nearly insurmountable obstacles to a startup operation.

You can read much more about how AI is redefining healthcare delivery and drug discovery in my new book Quantum Care: A Deep Dive into AI for Health Delivery and Research. It’s a comprehensive look at how AI and machine learning are being used to improve healthcare delivery at every touchpoint.

Rohit Mahajan is a Managing Partner with BigRio. He has particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

AI has been improving healthcare in many areas, but perhaps one of the disciplines where it is making the largest difference is medical imaging. AI’s ability to detect anomalies in medical images such as x-rays and MRIs that are imperceptible to the human eye are vastly improving the diagnostic capabilities of such imaging technologies.

Now, a Canadian lab has announced that it is using AI to improve breast cancer screenings. A lab out of Waterloo, Ont., is taking breast cancer research to new heights by working to help patients get the most beneficial treatment with AI-enhanced imaging technology.

When patients get breast cancer, they typically undergo a type of imaging, like an MRI, to look for cancerous tumors. The Waterloo lab has created “a synthetic correlate diffusion” MRI that is tailored to capture details and properties of cancer in a way that previous MRI systems couldn’t.

“It could be a very helpful tool to help oncologists and medical doctors to be able to identify and personalize the type of treatment that a cancer patient gets,” Alexander Wong, professor and Canada Research Chair in Artificial Intelligence and Medical Imaging at the University of Waterloo told Canadian news outlet the Global News.

Using “synthetic correlate diffusion imagining data,” the new AI-driven technology predicts whether a patient is likely to benefit from neoadjuvant chemotherapy – or chemotherapy that occurs before surgery, according to Wong.

Though the hardware of the actual MRI machine hasn’t changed in this model, what has altered is the way the technology sends “pulses” through the patient’s body and how it collects data, Wong noted.

“The cancer itself just lights up and really shows the different nuances and characteristics around it, which makes it very much easier to identify not only where the cancer is, the size of the cancer, but also the actual tissue characteristics of the cancer to help doctors make better decisions,” he said.

The AI can then analyze the MRI data to help learn whether breast cancer patients could benefit from chemotherapy before surgery in their treatment process.

“It’s essentially the combination of two types of technologies. One is the new MRI imaging technology to really capture the right information. The other is the AI advancement in terms of a deep neural network.”

Deep neural networks are able to continue improving as more information is captured, said Wong.

“The more examples it sees, the better it gets at really identifying these subtle patterns that differentiate from one another. As we train it with more and more data, it’s able to have higher levels of predictive accuracy,” he said.

As to how accurate the AI algorithm is, in a study of nearly 300 patients, Wong said, “The AI, when using our new form of MRI, was able to identify and predict with over 87 percent accuracy which patients would benefit from chemotherapy.

How BigRio Helps Bring Advanced AI Solutions to Healthcare

This new research into improved breast cancer screenings is just one of the many studies that are proving the powerful predictive power of AI and how it can be leveraged to better treat and even prevent injuries and disease.

In fact, improving disease detection and diagnostics is the area where AI is making one of the technology’s biggest impacts.

BigRio prides itself on being a facilitator and incubator for such advances in leveraging AI to improve diagnostics.

In fact, we have launched an AI Studio specifically for US-based Healthcare startups with AI centricity. Our mission is to help AI startups scale and gear up to stay one step ahead of the pack and emerge as winners in their respective domains.

AI Startups face numerous challenges when it comes to demonstrating their value proposition, particularly when it comes to advanced AI solutions for pharma and healthcare. We have taken an award-winning and unique approach to incubating and facilitating startups that allow the R&D team and stakeholders to efficiently collaborate and craft the process to best suit actual ongoing needs, which leads to a faster, more accurate output.

We provide:

  • Access to a top-level talent pool, including business executives, developers, data scientists, and data engineers.
  • Assistance in the development and testing of the MVP, Prototypes, and POCs.
  • Professional services for implementation and support of Pilot projects
  • Sales and Marketing support and potential client introductions.
  • Access to private capital sources.

BigRio excels in overcoming such initial hurdles, which present nearly insurmountable obstacles to a startup operation.

You can read much more about how AI is redefining healthcare delivery and drug discovery in my new book Quantum Care: A Deep Dive into AI for Health Delivery and Research. It’s a comprehensive look at how AI and machine learning are being used to improve healthcare delivery at every touchpoint.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

There has been no lack of news about how AI is redefining healthcare and improving patient outcomes for physical ailments. There has not been that much news, however, on how AI can help in the treatment of emotional or mental disorders.

Until now.

Researchers have just released the results of a study in which they used AI to better predict suicide risk.

The scientists from Worcester Polytechnic Institute (WPI) and Harvard Medical School-affiliated McLean Hospital in Belmont conducted a study assessing the use of AI to predict and gain a better understanding of suicide and the mechanisms and emotional states that drive self-injury.

This particular study targeted women because, according to the CDC, death by suicide is increasing at an alarming rate among women. The group of researchers developed an algorithm that was designed to predict suicide attempts among participants and identify subgroups of patients who were at the highest risk of entering a suicidal mindset.

They then used AI approaches to cluster data to expose any existing patterns. The patterns revealed a broad set of dissociative symptoms, such as the lack of connection between one’s sense of self and the environment. This was often due to trauma, the researchers said.

Following this step, researchers trained an algorithm to distinguish between patients with various dissociation levels and the 30 healthy controls. They found that this tool could zero in on specific dissociative symptoms, predicting previous suicide attempts with an accuracy of nearly 90% percent.

Aside from AI being able to predict thoughts of self-harm and previous suicide attempts accurately, researchers also noted that the study emphasized the need for clinicians to assess patients for dissociative disorder symptoms.

“We’re trying to say that among these hundreds of symptoms and indicators, our results suggest these two or three symptoms may be helpful to focus in on,” said Dmitry Korkin, Ph.D., the Harold L. Jurist ’61 and Heather E. Jurist Dean’s Professor of Computer Science at WPI, one of the lead researchers on the project.

The key takeaway from this study is that it is one of the first to show that AI-driven programs can give clinicians predictive and theoretically preventive tools for mental illnesses, just as they are already doing in practice for many physical disorders.

How BigRio Helps Bring Advanced AI Solutions to Healthcare

The WPI research is one of the few studies that are now showing that AI has predictive value in mental health, just as it has already been put into practice in improving physical conditions. In fact, improving disease detection and diagnostics – whether that be physical, and now we see mental health — is the area where AI is making one of the technology’s biggest impacts.

BigRio prides itself on being a facilitator and incubator for such advances in leveraging AI to improve diagnostics.

In fact, we have launched an AI Studio specifically for US-based Healthcare startups with AI centricity. Our mission is to help AI startups scale and gear up to stay one step ahead of the pack and emerge as winners in their respective domains.

AI Startups face numerous challenges when it comes to demonstrating their value proposition, particularly when it comes to advanced AI solutions for pharma and healthcare. We have taken an award-winning and unique approach to incubating and facilitating startups that allow the R&D team and stakeholders to efficiently collaborate and craft the process to best suit actual ongoing needs, which leads to a faster, more accurate output.

We provide:

• Access to a top-level talent pool, including business executives, developers, data scientists, and data engineers.

• Assistance in the development and testing of the MVP, Prototypes, and POCs.

• Professional services for implementation and support of Pilot projects

• Sales and Marketing support and potential client introductions.

• Access to private capital sources.

BigRio excels in overcoming such initial hurdles, which present nearly insurmountable obstacles to a startup operation.

You can read much more about how AI is redefining healthcare delivery and drug discovery in my new book Quantum Care: A Deep Dive into AI for Health Delivery and Research. It’s a comprehensive look at how AI and machine learning are being used to improve healthcare delivery at every touchpoint.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

 

In 2022 readers of these pages saw many reports on the incredible advances AI is creating in diagnostics and patient care. However, there is more to the delivery of healthcare in this country and to improving patient outcomes than direct treatment protocols. As it turns out, AI is tackling those issues as well, solving many of the bottlenecks and other burdens that are placed upon healthcare administration.

“Clinical burnout” is a very real problem among healthcare personnel. Mounds of paperwork and short staff have only increased these pressures in recent years. The more time doctors, nurses, and other clinical staff have to spend on administrative duties, the less time they can spend with patients – overall care at the facility or hospital suffers, and readmission rates increase.

According to the American Academy of Family Physicians, primary care physician appointments take an average of 18 minutes, of which 49% of the time is spent handling electronic health recording.

But a relatively new application of AI in healthcare, known as “computer-assisted physician documentation (CAPD),” can and is changing all of that, so more of the clinician’s time during a visit is spent on patient care and not on administrative tasks.

According to 3M when of the initial implementers of the solutions, “CAPD acts as a scribe and advisor, nudging clinicians with documentation suggestions to make record keeping as thorough as possible. These non-intrusive nudges decrease clinician stress and reinforce accurate billing and reimbursement.”

As AI assists with the capture-to-code process, integrated electronic health record (EHR) systems must work in tandem with cloud-based systems to pass and connect information across departments.

CAPD assistants not only save time but also lower the chances of errors and duplicative work. Information sharing across departments gives transparency to the revenue cycle and provides a complete picture of both the patient story and population health.

“The better the coding is, the better the outcome for the hospital, which enables the hospital to make decisions that will improve their services to patients,” explains Catalin Velescu, 3M area division director of the EMEA region.

How BigRio Helps Facilitate Advancement in Healthcare AI

Like the AI technology being developed and implemented by big IT players such as 3M, BigRio is also helping to foster innovation in AI for healthcare.

In fact, one of our most successful cases was using our resources to create a new cloud-based intuitive model for one of the top 10 EMR/HER providers in the US. The Client realized that their EHR platform needed UI/UX redesign and revision to take advantage of cloud-based integrations and applications. BigRio stepped in to create a modernization roadmap strategy, architecture, execution plan, and prototype to fit the Client’s needs.

We like to think of ourselves as a “Shark Tank for AI.”

If you are familiar with the TV series, then you know that, basically, what they do is hyper-accelerate the most important part of the incubation process – visibility. You can’t get better visibility than getting in front of celebrity investors and a TV audience of millions of viewers. Many entrepreneurs who have appeared on that program – even those who did not get picked up by the sharks – succeeded because others who were interested in their concepts saw them on the show.

At BigRio, we may not have a TV audience, but we can do the same. We have the contacts and the expertise to not only weed out the companies that are not ready, as the sharks on the TV show do but also mentor and get those that we feel are readily noticed by the right people in the biomedical community.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

 

The know-how and experience of nurses are a critical body of knowledge and expertise about patients and patient care. Wouldn’t it be wonderful if there was a way to pool all of that knowledge into one place for hospitals and health organizations to make better decisions about patients?

There is, and as you might imagine, it involves AI.

Several health systems, led by the Columbia University Irving Medical Center (CUIMC), are testing an AI-driven predictive tool that is attempting to emulate nurses’ seemingly innate ability to pick up cues about patients’ health from subtle changes in behavior and appearance.

According to its developers, CONCERN (COmmunicating Narrative Concerns Entered by RNs) is a predictive tool that extracts nurses’ expert and knowledge-driven behaviors within patient health records and transforms them into observable data that support early prediction of organ failure or other critical conditions in hospitalized patients.

CUIMC is partnering with three hospital systems — Mass General Brigham (MA), Vanderbilt University Medical Center (TN), and Washington University School of Medicine/Barnes-Jewish Hospital (MO) — to test the effectiveness of the CONCERN implementation toolkit, developed to support large-scale adoption of the tool.

This initiative recently received funding from the American Nurses Foundation through the Reimagining Nursing Initiative.

“CONCERN shows what nurses already know: Our risk identification is not simply a subjective clinical hunch,” said Sarah Rossetti, assistant professor of biomedical informatics and nursing at Columbia, in a statement. “We’re demonstrating that nurses have objective, expert-based knowledge that drives their practice, and we’re positioning nurses as knowledge workers with tremendous value to the entire care team.”

Annually, more than 200,000 patients die in US hospitals from cardiac arrest, and over 130,000 patients’ deaths are attributed to sepsis. Many of these deaths could be preventable if patients who are at risk are detected earlier. Prior work from the CONCERN team found that nursing documentation within EHRs contains information that could contribute to early detection and treatment, but these data are not being analyzed and exposed by EHRs to clinicians to initiate interventions quickly enough to save patients.

How BigRio Helps Bring Advanced AI Solutions to Healthcare

Like the CONCERN project, leveraging human expertise and adapting to the predictive power of AI algorithms is an area where AI and machine learning are making one of the technology’s biggest impacts in the healthcare field.

BigRio prides itself on being a facilitator and incubator for such advances in leveraging AI to improve patient outcomes. In fact, it was my father’s own battle with and eventual death from lung disease that set me on my path to finding ways to use AI to provide earlier detection of serious medical conditions for improved patient care.

Eventually, among our other success stories, we did collaborate with a researcher who is in the process of developing a cognitive digital twin of the human lung. Right now, that technology is being used specifically in the realm of testing inhalers for asthma patients, but like the CONCERN project, it has broader implications for better diagnostics and early interventions to save lives.

We like to think of ourselves as a “Shark Tank for AI.”

If you are familiar with the TV series, then you know that, basically, what they do is hyper-accelerate the most important part of the incubation process – visibility. You can’t get better visibility than getting in front of celebrity investors and a TV audience of millions of viewers. Many entrepreneurs who have appeared on that program – even those who did not get picked up by the sharks – succeeded because others who were interested in their concepts saw them on the show.

At BigRio, we may not have a TV audience, but we can do the same. We have the contacts and the expertise to not only weed out the companies that are not ready, as the sharks on the TV show do but also mentor and get those that we feel are readily noticed by the right people in the biomedical community.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

 

Most patients and every medical practitioner know that when it comes to chronic debilitating diseases, the earlier they can be detected and treated, the better. This is one of the major promises of AI in healthcare, improved diagnostics for earlier detection and better patient outcomes.

The latest such application comes as researchers are developing an AI solution that can find the early sign of osteoarthritis of the knee. Like many AI-driven diagnostic enhancements, this one can see subtle signs on X-rays better than the human eye. This is critical because x-rays are the primary diagnostic method for early knee osteoarthritis. An early diagnosis can save the patient from unnecessary examinations, treatments, and even knee replacement surgery.

Osteoarthritis is the most common joint-related ailment globally. In Finland alone – where this research took place — it causes as many as 600,000 medical visits every year. It has been estimated to cost the national economy up to EUR1 billion every year.

The new AI-based method was trained to detect a radiological feature predictive of osteoarthritis from x-rays. The method was developed in cooperation with the Digital Health Intelligence Lab at the University of Jyvaskyla as a part of the AI Hub Central Finland project. It utilizes neural network technologies that are widely used globally.

“The aim of the project was to train the AI to recognize an early feature of osteoarthritis from an x-ray. Something that many experienced doctors can visually distinguish from the image, but cannot be done automatically, and is often missed by the untrained eye,” explains Anri Patron, the researcher responsible for the development of the method.

The anomaly the AI has been trained to automatically detect is to see if there is “spiking” on the tibial tubercles in the knee joint or not. Tibial spiking is known to be an early sign of osteoarthritis.

The researchers say that the AI matched human doctors’ assessment of the presence of spiking in nearly 90% of cases, instantly, without the need to scrutinize and deeply examine the x-rays as the human orthopedic surgeons did.

The research offers definitive proof that AI can support early diagnosis of osteoarthritis at the point of primary healthcare before a patient is referred to an orthopedic specialist, which can make a major difference in catching and treating knee arthritis early.

“If we can make the diagnosis in the early stages, we can avoid uncertainty and expensive examinations such as MRI scanning. In addition, the patient can be motivated to take measures to slow down or even stop the progression of symptomatic osteoarthritis. In the best possible scenario, the patient might even avoid joint replacement surgery,” sums up professor of surgery Juha Paloneva, one of the Finnish researchers on the project.

How BigRio Helps Healthcare AI Startups

Like the technology developed by the researchers with the Central Finland Health Care District, BigRio is also a facilitator and incubator for AI startups, particularly in healthcare. In fact, it was my father’s own battle with and eventual death from lung disease that set me on my path to finding ways to use AI to improve healthcare delivery.
Eventually, among our other success stories, we did collaborate with a researcher who is in the process of developing a cognitive digital twin of the human lung. Right now, that technology is being used specifically in the realm of testing inhalers for asthma patients, but like the UWS tool, it has broader implications for better diagnostics and treatments for COPD and other lung diseases.
We like to think of ourselves as a “Shark Tank for AI.”

If you are familiar with the TV series, then you know that, basically, what they do is hyper-accelerate the most important part of the incubation process – visibility. You can’t get better visibility than getting in front of celebrity investors and a TV audience of millions of viewers. Many entrepreneurs who have appeared on that program – even those who did not get picked up by the sharks – succeeded because others who were interested in their concepts saw them on the show.

At BigRio, we may not have a TV audience, but we can do the same. We have the contacts and the expertise to not only weed out the companies that are not ready, as the sharks on the TV show do but also mentor and get those that we feel are readily noticed by the right people in the biomedical community.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

Urinary tract infections, commonly known as UTIs, usually do not pose serious health risks – when they are detected and treated early. However, when allowed to advance undetected past a certain point, a number of serious adverse outcomes can result from late or misdiagnosis of UTI.

A group of researchers from the University of Edinburgh and Heriot-Watt University are developing artificial intelligence and “socially assistive robots” to detect urinary tract UTIs earlier and ensure better patient outcomes.

UTIs affect 150 million people worldwide annually, making it one of the most common types of infection. When diagnosed early, it can be treated with antibiotics. If left untreated, UTIs can lead to sepsis, kidney damage, and even loss of life.

Diagnosis, however, can be difficult with lab analysis, a process taking up to 48 hours, providing the only definitive result. Early signs of a UTI can also be challenging to recognize because symptoms vary according to age and existing health conditions. There is no single sign of infection but a collection of symptoms which may include pain, fever, increased need to urinate, changes in sleep patterns, and tremors.

To address these concerns, the researchers are working with two industry partners from the care sector who are helping the scientists to develop machine learning methods and interactions with socially assistive robots to support earlier detection of potential infections and raise an alert for investigation by a clinician.

The project will gather continual data about the daily activities of individuals in their homes via sensors that could help spot changes in behavior or activity levels and trigger an interaction with a socially assistive robot. Known as “FEATHER,” the AI platform will combine and analyze these data points to flag potential infection signs before an individual or caretaker is even aware that there is a problem. Behavioral changes that could indicate UTI include changes in walking pace, increased frequency of urination, changes in cognitive function, or a change in sleep patterns, all of which could be noticed and documented by interaction with the assistive robot.

The AI and implementation aspects of the project will be led by Professor Kia Nazarpour, Dr. Nigel Goddard, and Dr. Lynda Webb from the University of Edinburgh. The Human-Robot Interaction aspects will be led by Professor Lynne Baillie, assisted by Dr. Mauro Dragone, from Heriot-Watt University.

Professor Kia Nazarpour, project lead and Professor of Digital Health at the School of Informatics, University of Edinburgh, said, “This unique data platform will help individuals, caretakers, and clinicians to recognize the signs of potential urinary tract infections far earlier, helping to prompt the investigations and medical tests needed. Earlier detection makes timely treatment possible, improving outcomes for patients, lowering the number of people presenting at hospital, and reducing costs to the NHS.”

How BigRio Helps Bring Advanced AI Solutions to Healthcare

Like the FEATHER project, improving disease detection, medical imaging, and diagnostics is an area where AI and machine learning are making one of the technology’s biggest impacts.

BigRio prides itself on being a facilitator and incubator for such advances in leveraging AI to improve diagnostics. In fact, it was my father’s own battle with and eventual death from lung disease that set me on my path to finding ways to use AI to provide earlier detection of serious medical conditions for improved patient outcomes.

Eventually, among our other success stories, we did collaborate with a researcher who is in the process of developing a cognitive digital twin of the human lung. Right now, that technology is being used specifically in the realm of testing inhalers for asthma patients, but like the FEATHER UTI detection tool, it has broader implications for better diagnostics and treatments for COPD and other lung diseases.

We like to think of ourselves as a “Shark Tank for AI.”

If you are familiar with the TV series, then you know that, basically, what they do is hyper-accelerate the most important part of the incubation process – visibility. You can’t get better visibility than getting in front of celebrity investors and a TV audience of millions of viewers. Many entrepreneurs who have appeared on that program – even those who did not get picked up by the sharks – succeeded because others who were interested in their concepts saw them on the show.

At BigRio, we may not have a TV audience, but we can do the same. We have the contacts and the expertise to not only weed out the companies that are not ready, as the sharks on the TV show do but also mentor and get those that we feel are readily noticed by the right people in the biomedical community.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.

BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

Artificial Intelligence has been promising to revolutionize healthcare for quite some time; however, one look at any modern hospital or healthcare facility, and it is easy to see that the revolution is already here.

In almost every patient touchpoint AI is already having an enormous impact on changing the way healthcare is delivered, streamlining operations, improving diagnostics, and improving outcomes.

Although the deployment of AI in the healthcare sector is still in its infancy, it is becoming a much more common sight. According to technology consulting firm, Gartner, healthcare IT spending for 2021 was a hefty $140 billion worldwide, with enterprises listing “AI and robotic process automation (RPA)” as their lead spending priorities.

Here, in no particular order or importance, are seven of the top areas where healthcare AI solutions are being developed and currently deployed.

1. Operations and Administration
A hospital’s operation and administration expenses can be a major drain on the healthcare system. AI is already providing tools and solutions that are designed to improve and streamline administration. Such AI algorithms are proving to be invaluable for insurers, payers, and providers alike. Specifically, there are several AI programs and AI healthcare startups that are dedicated to finding and eliminating fraud. It has been estimated that healthcare fraud costs insurers anywhere between $70 billion and $234 billion each year, harming both patients and taxpayers.

2. Medical Research
Probably one of the most promising areas where AI is making a major difference in healthcare is in medical research. AI tools and software solutions are making an astounding impact on streamlining every aspect of medical research, from improved screening of candidates for clinical trials, to targeted molecules in drug discovery, to the development of “organs on a chip” – AI combined with the power of ever-improving Natural Language Processing (NLP) is changing the very nature of medical research for the better.

3. Predictive Outcomes and Resource Allocation
AI is being used in hospital settings to better predict patient outcomes and more efficiently allocate resources. This proved extraordinarily helpful during the peak of the pandemic when facilities were able to use AI algorithms to predict upon admission to the ER, which patients would most benefit from ventilators, which were in very short supply. Similarly, a Stanford University pilot project is using AI algorithms to determine which patients are at high risk of requiring ICU care within an 18 to 24 hours period.

4. Diagnostics
AI applications in diagnostics, particularly in the field of medical imaging, are extraordinary. AI can “see” details in MRIs and other medical images far greater than the human eye and, when tied into the enormous volume of medical image databases, can make far more accurate diagnoses of conditions such as breast cancer, eye disease, heart, and lung disease and so much more. AI can look at vast numbers of medical images and then identify patterns in seconds that would take human technicians hours or days to do. AI can also detect minor variations that humans simply could not find, no matter how much time they had. This not only improves patient outcomes but also saves money. For example, studies have found that earlier diagnosis and treatment of most cancers can cut treatment costs by more than 50%.

5. Training
AI is allowing medical students and doctors “hands-on training” via virtual surgeries and other procedures that can provide real-time feedback on success and failure. Such AI-based training programs allow students to learn techniques in safe environments and receive immediate critique on their performance before they get anywhere near a patient. One study found that med students learned skills 2.6 times faster and performed 36% better than those not taught with AI.

6. Telemedicine
Telemedicine has revolutionized patient care, particularly since the pandemic, and now AI is taking remote medicine to a whole new level where patients can tie AI-driven diagnostic tools through their smartphones and provide remote images and monitoring of changes in detectable skin cancers, eye conditions, dental conditions and more. AI programs are also being used to remotely monitor heart patients, diabetes patients, and others with chronic conditions and help to ensure they are complying with taking their medications.

7. Direct treatment
In addition to adding better clinical outcomes with improved diagnostics and resource allocation, AI is already making a huge difference in the direct delivery of treatments. One exciting and extremely profound example of this is robotic/AI-driven surgical procedures. Minimally invasive and non-invasive AI-guided surgical procedures are already becoming quite common. Soon, all but some of the most major surgeries, such as open heart surgeries, can and will be done as minimally invasive procedures, and even the most complex “open procedures” will be made safer, more accurate, and more efficient thanks to surgical AI and digital twins of major organs such as lungs and the heart.

Rohit Mahajan is a Managing Partner with BigRio. He has a particular expertise in the development and design of innovative solutions for clients in Healthcare, Financial Services, Retail, Automotive, Manufacturing, and other industry segments.
BigRio is a technology consulting firm empowering data to drive innovation, and advanced AI. We specialize in cutting-edge Big Data, Machine Learning, and Custom Software strategy, analysis, architecture, and implementation solutions. If you would like to benefit from our expertise in these areas or if you have further questions on the content of this article, please do not hesitate to contact us.

NLP evolved to be an important way to track and categorize viewership in the age of cookie-less ad targeting. While users resist being identified by a single user ID, they are much less sensitive to and even welcome the chance for advertisers to personalize media content based on discovered preferences. This personalization comes from improvements made upon the original LDA algorithm and incorporate word2vec concepts.

The classic LDA algorithm developed at Columbia University raised industry-wide interest in computerized understanding of documents. It incidentally also launched variational inference as a major research direction in Bayesian modeling. The ability of LDA to process massive amounts of documents, extract their main theme based on a manageable set of topics and compute with relative high efficiency (compared to the more traditional Monte Carlo methods which sometimes run for months) made LDA the de facto standard in document classification.

However, the original LDA approach left the door open on certain desirable properties. It is, at the end, fundamentally just a word counting technique. Consider these two statements:

“His next idea will be the breakthrough the industry has been waiting for.”

“He is praying that his next idea will be the breakthrough the industry has been waiting for.”

After removal of common stop words, these two semantically opposite sentences have almost identical word count features. It would be unreasonable to expect a classifier to tell them apart if that’s all you provide it as inputs.

The latest advances in the field improve upon the original algorithm on several fronts. Many of them incorporate the word2vec concept where an embedded vector is used to represent each word in a way that reflects its semantic meaning. E.g. king – man + woman = queen

Autoencoder variational inference (AVITM) speeds up inference on new documents that are not part of the training set. It’s variant prodLDA uses product of experts to achieve higher topic coherence. Topic-based classification can potentially perform better as a result.

Doc2vec – generates semantically meaningful vectors to represent a paragraph or entire document in a word order preserving manner.

LDA2vec – derives embedded vectors for the entire document in the same semantic space as the word vectors.

Both Doc2vec and LDA2vec provide document vectors ideal for classification applications.

All these new techniques achieve scalability using either GPU or parallel computing. Although research results demonstrate a significant improvement in topic coherence, many investigators now choose to deemphasize topic distribution as the means of document interpretation. Instead, the unique numerical representation of the individual documents became the primary concern when it comes to classification accuracy. The derived topics are often treated as simply intermediate factors, not unlike the filtered partial image features in a convolutional neural network.

With all this talk of the bright future of Artificial Intelligence (AI), it’s no surprise that almost every industry is looking into how they will reap the benefits from the forthcoming (dare I say already existing?) AI technologies. For some, AI will merely enhance the technologies already being used. For others, AI is becoming a crucial component to keeping the industry alive. Healthcare is one such industry.

The Problem: Diminishing Labor Force

Part of the need for AI-based Healthcare stems from the concern that one-third of nurses are baby boomers, who will retire by 2030, taking their knowledge with them. This drastic shortage in healthcare workers poses the imminent need for replacements and, while the enrollment numbers in nursing school stay stable, the demand for experienced workers will continue to increase. This need for additional clinical support is one area where AI comes into play. In fact, these emerging technologies will not only help serve as a multiplier force for experienced nurses, but for doctors and clinical staff support as well.

Healthcare-AI Automation Applications to the Rescue

One of the most notable solutions for this shortage will be automating processes for determining whether or not a patient actually needs to visit a doctor in-person. Doctors’ offices are currently inundated with appointments and patients who’s lower-level questions and concerns could be addressed without a face-to-face consultation via mobile applications. Usually in the from of chatbots, these AI-powered applications can provide basic healthcare support by “bringing the doctor to the patient” and alleviating the need for the patient to leave the comfort of their home, let alone scheduling an appointment to go in-office and visit a doctor (saving time and resources for all parties involved).

Should a patient need to see a doctor,  these applications also contain schedulers capable of determining appointment type, length, urgency, and available dates/times, foregoing the need for constant human-based clinical support and interaction. With these AI schedulers also comes AI-based Physician’s Assistants that provide additional in-office support like scheduling follow-up appointments, taking comprehensive notes for doctors, ordering specific prescriptions and lab testing, providing drug interaction information for current prescriptions, etc. And this is just one high-level AI-based Healthcare solution (albeit with many components).

With these advancements, Healthcare stands to gain significant ground with the help of domain-specific AI capabilities that were historically powered by humans. As a result, the next generation of healthcare has already begun, and it’s being revolutionized by AI.