Posts

NLP evolved to be an important way to track and categorize viewership in the age of cookie-less ad targeting. While users resist being identified by a single user ID, they are much less sensitive to and even welcome the chance for advertisers to personalize media content based on discovered preferences. This personalization comes from improvements made upon the original LDA algorithm and incorporate word2vec concepts.

The classic LDA algorithm developed at Columbia University raised industry-wide interest in computerized understanding of documents. It incidentally also launched variational inference as a major research direction in Bayesian modeling. The ability of LDA to process massive amounts of documents, extract their main theme based on a manageable set of topics and compute with relative high efficiency (compared to the more traditional Monte Carlo methods which sometimes run for months) made LDA the de facto standard in document classification.

However, the original LDA approach left the door open on certain desirable properties. It is, at the end, fundamentally just a word counting technique. Consider these two statements:

“His next idea will be the breakthrough the industry has been waiting for.”

“He is praying that his next idea will be the breakthrough the industry has been waiting for.”

After removal of common stop words, these two semantically opposite sentences have almost identical word count features. It would be unreasonable to expect a classifier to tell them apart if that’s all you provide it as inputs.

The latest advances in the field improve upon the original algorithm on several fronts. Many of them incorporate the word2vec concept where an embedded vector is used to represent each word in a way that reflects its semantic meaning. E.g. king – man + woman = queen

Autoencoder variational inference (AVITM) speeds up inference on new documents that are not part of the training set. It’s variant prodLDA uses product of experts to achieve higher topic coherence. Topic-based classification can potentially perform better as a result.

Doc2vec – generates semantically meaningful vectors to represent a paragraph or entire document in a word order preserving manner.

LDA2vec – derives embedded vectors for the entire document in the same semantic space as the word vectors.

Both Doc2vec and LDA2vec provide document vectors ideal for classification applications.

All these new techniques achieve scalability using either GPU or parallel computing. Although research results demonstrate a significant improvement in topic coherence, many investigators now choose to deemphasize topic distribution as the means of document interpretation. Instead, the unique numerical representation of the individual documents became the primary concern when it comes to classification accuracy. The derived topics are often treated as simply intermediate factors, not unlike the filtered partial image features in a convolutional neural network.

With all this talk of the bright future of Artificial Intelligence (AI), it’s no surprise that almost every industry is looking into how they will reap the benefits from the forthcoming (dare I say already existing?) AI technologies. For some, AI will merely enhance the technologies already being used. For others, AI is becoming a crucial component to keeping the industry alive. Healthcare is one such industry.

The Problem: Diminishing Labor Force

Part of the need for AI-based Healthcare stems from the concern that one-third of nurses are baby boomers, who will retire by 2030, taking their knowledge with them. This drastic shortage in healthcare workers poses the imminent need for replacements and, while the enrollment numbers in nursing school stay stable, the demand for experienced workers will continue to increase. This need for additional clinical support is one area where AI comes into play. In fact, these emerging technologies will not only help serve as a multiplier force for experienced nurses, but for doctors and clinical staff support as well.

Healthcare-AI Automation Applications to the Rescue

One of the most notable solutions for this shortage will be automating processes for determining whether or not a patient actually needs to visit a doctor in-person. Doctors’ offices are currently inundated with appointments and patients who’s lower-level questions and concerns could be addressed without a face-to-face consultation via mobile applications. Usually in the from of chatbots, these AI-powered applications can provide basic healthcare support by “bringing the doctor to the patient” and alleviating the need for the patient to leave the comfort of their home, let alone scheduling an appointment to go in-office and visit a doctor (saving time and resources for all parties involved).

Should a patient need to see a doctor,  these applications also contain schedulers capable of determining appointment type, length, urgency, and available dates/times, foregoing the need for constant human-based clinical support and interaction. With these AI schedulers also comes AI-based Physician’s Assistants that provide additional in-office support like scheduling follow-up appointments, taking comprehensive notes for doctors, ordering specific prescriptions and lab testing, providing drug interaction information for current prescriptions, etc. And this is just one high-level AI-based Healthcare solution (albeit with many components).

With these advancements, Healthcare stands to gain significant ground with the help of domain-specific AI capabilities that were historically powered by humans. As a result, the next generation of healthcare has already begun, and it’s being revolutionized by AI.